\qquad

C.U.SHAH UNIVERSITY

 Summer Examination-2019
Subject Name : Mathematical Concepts for Computer Science

Subject Code : 4CS01BMA2 Branch: B.C.A.
Semester :1 Date : 14/03/2019
Time : 02:30 To 05:30
Marks : 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(a) What is set?
(b) The set O of odd positive integers less than 10 can be expressed by \qquad
(c) Power set of empty set has exactly \qquad subset.
(d) If set A and set B are two disjoint sets then $\mathrm{A} \cap \mathrm{B}=$ \qquad
(e) How many elements are in power set of a set of order n ?
(f) The relation $\{(1,2),(1,3),(3,1),(1,1),(3,3),(2,3),(2,1)\}$ is \qquad relation.
(g) If domain of function $\mathrm{f}: \mathrm{x} \rightarrow \mathrm{x}^{2}+1$ is $\{0,1\}$, then its range is \qquad
(h) Define : Rectangular matrix
(i) Define : row matrix
(j) If A is a symmetric matrix, then $A^{T}=$ \qquad
(k) If the order of matrix A is $m x n$. And the order of B is $n \times p$. Then the order of matrix AB is ?
(I) What is equivalence relation?
(m) $\mathrm{A}(5,5)$ can be plotted on \qquad quadrant.
(n) What is the distance between points $\mathrm{A}(4,0)$ and $\mathrm{B}(0,3)$?

Attempt any four questions from Q-2 to Q-8

Q-2

Explain following types of sets with example.

Empty set, infinite set, singleton set, subset, universal set, equal set, equivalent set

Q-3 Attempt all questions

(a) Let $\mathrm{U}=\{1,2,3, \ldots, 10\}, \mathrm{A}=\{1,3,5,7,9\}, \mathrm{B}=\{1,5,6,8\}, \mathrm{C}=\{1,4,6,7\}$ then verify that,
(i) $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C})$

(ii) $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})$
(b) Explain and prove De morgan's law.
(c) If $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{B}=\{\mathrm{a}, \mathrm{b}\}$ find $\mathrm{AXB}, \mathrm{BXA}$

Q-4 Attempt all questions
(a) Explain reflexive, symmetric, transitive relation with example.
(b) Explain surjective, bijectiove, injective function with example.
(c) Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{B}=\{1,2\}, \mathrm{C}=\{\mathrm{a}, \mathrm{b}, \mathrm{g}\}$ are being three sets and
$\mathrm{R}=\{(\mathrm{a}, 1),(\mathrm{a}, 2),(\mathrm{b}, 2),(\mathrm{c}, 1)\}, \mathrm{S}=\{(1, \mathrm{a}),(2, \mathrm{~b}),(2, \mathrm{~g})\}$ be two relations then find SOR.

Q-5 Attempt all questions
(a) Prove that $(-2,-2),(-1,2)$ and $(3,1)$ are the vertices of a isosceles triangle.
(b) Find the area of triangle whose vertices are $(2,3),(8,5)$ and $(4,7)$.
(c) Prove that $(0,-2),(2,4)$ and $(-1,-5)$ are collinear points

Q-6 Attempt all questions
(a) If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}6 & 7 \\ 8 & 9\end{array}\right]$ then find $A B$ and $B A$
(b) Prove that $A+A^{T}$ is a symmetric matrix if

$$
A=\left[\begin{array}{lll}
4 & 1 & 3 \tag{5}\\
2 & 0 & 5 \\
1 & 3 & 0
\end{array}\right]
$$

(c) Find the determinant of matrix if

$$
A=\left[\begin{array}{ccc}
6 & 1 & 1 \tag{4}\\
4 & -2 & 5 \\
2 & 8 & 7
\end{array}\right]
$$

Q-7 Attempt all questions
(a) Prove that $\mathrm{A}^{3}-3 \mathrm{~A}^{2}+2 \mathrm{~A}=0$

$$
\text { If } \mathrm{A}=\left[\begin{array}{lll}
1 & 0 & 1 \tag{14}\\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

(b)

$$
\text { If } A=\left[\begin{array}{lll}
1 & 2 & 3 \tag{7}\\
0 & 4 & 5 \\
1 & 0 & 6
\end{array}\right] \text { then find } A^{-1}
$$

Q-8 Attempt all questions
(a)

Evaluate $\lim _{z \rightarrow 4} \frac{\sqrt{z}-2}{z-4}$, if it exists.
(b)

Evaluate $\lim _{h \rightarrow 0} \frac{(6+h)^{2}-36}{h}$, if it exists.
(c)
(5)

Evaluate $\lim _{x \rightarrow-5 x^{2}+2 x-15} \frac{x^{2}-25}{\text {, if it exists. }}$

