## C.U.SHAH UNIVERSITY Summer Examination-2019

\_\_\_\_

| Subject Name : Mathematical Concepts for Computer ScienceSubject Code : 4CS01BMA2Branch: B.C.A.Semester :1Date : 14/03/2019Time : 02:30 To 05:30Marks : 70                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|
| <ul> <li>Instructions:</li> <li>(1) Use of Programmable calculator &amp; any other electronic instrument is prohibited.</li> <li>(2) Instructions written on main answer book are strictly to be obeyed.</li> <li>(3) Draw neat diagrams and figures (if necessary) at right places.</li> <li>(4) Assume suitable data if needed.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |  |  |  |  |
| Q-1<br>(a)<br>(b)<br>(c)<br>(d)<br>(e)<br>(f)<br>(g)<br>(h)<br>(i)<br>(j)<br>(k)<br>(l)<br>(n)<br>(n)<br>(n)                                                                                                                                                                                                                                 | Power set of empty set has exactly subset.<br>If set A and set B are two disjoint sets then $A \cap B =$<br>How many elements are in power set of a set of order n ?<br>The relation { (1,2), (1,3), (3,1), (1,1), (3,3), (2,3), (2,1) } is relation.<br>If domain of function f:x $\rightarrow$ x <sup>2</sup> + 1 is {0,1}, then its range is<br>Define : Rectangular matrix<br>Define : row matrix<br>If A is a symmetric matrix, then $A^{T} =$<br>If the order of matrix A is mxn. And the order of B is n×p. Then the order<br>of matrix AB is ?<br>What is equivalence relation ?<br>) A(5,5) can be plotted on quadrant. | (14) |  |  |  |  |
| Attempt a<br>Q-2                                                                                                                                                                                                                                                                                                                             | ny four questions from Q-2 to Q-8<br>Explain following types of sets with example.<br>Empty set, infinite set, singleton set, subset, universal set, equal set, equivalent set                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (14) |  |  |  |  |

## Q-3 Attempt all questions (14)

(a) Let  $U=\{1,2,3,...,10\}$ ,  $A=\{1,3,5,7,9\}$ ,  $B=\{1,5,6,8\}$ ,  $C=\{1,4,6,7\}$  then (5) verify that,

(i) 
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$



|     |              | (ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$                                                                          |      |
|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------|------|
|     | <b>(b)</b>   | Explain and prove De morgan's law.                                                                                             | (5)  |
|     | (c)          | If $A=\{a,b,c\}$ , $B=\{a,b\}$ find AXB, BXA                                                                                   | (4)  |
| Q-4 |              | Attempt all questions                                                                                                          | (14) |
|     | <b>(a)</b>   | Explain reflexive, symmetric, transitive relation with example.                                                                | (5)  |
|     | <b>(b)</b>   | Explain surjective, bijectiove, injective function with example.                                                               | (5)  |
|     | (c)          | Let $A = \{a,b,c\}$ , $B = \{1,2\}$ , $C = \{a,b,g\}$ are being three sets and                                                 | (4)  |
|     |              | $R=\{(a,1),(a,2),(b,2),(c,1)\}, S=\{(1,a),(2,b),(2,g)\}$ be two relations then find SOR.                                       |      |
| Q-5 |              | Attempt all questions                                                                                                          | (14) |
|     | <b>(a)</b>   | Prove that $(-2,-2)$ , $(-1,2)$ and $(3,1)$ are the vertices of a isosceles triangle.                                          | (5)  |
|     | <b>(b)</b>   | Find the area of triangle whose vertices are (2,3), (8,5) and (4,7).                                                           | (5)  |
|     | ( <b>c</b> ) | Prove that $(0,-2)$ , $(2,4)$ and $(-1,-5)$ are collinear points                                                               | (4)  |
| Q-6 |              | Attempt all questions                                                                                                          | (14) |
|     | (a)          | If A = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ , B = $\begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$ then find AB and BA | (5)  |
|     | <b>(b)</b>   | Prove that $A+A^{T}$ is a symmetric matrix if                                                                                  | (5)  |
|     |              | $A = \begin{bmatrix} 4 & 1 & 3 \\ 2 & 0 & 5 \\ 1 & 3 & 0 \end{bmatrix}$                                                        |      |
|     | (c)          | Find the determinant of matrix if                                                                                              | (4)  |
|     |              | $A = \begin{bmatrix} 6 & 1 & 1 \\ 4 & -2 & 5 \\ 2 & 8 & 7 \end{bmatrix}$                                                       |      |
|     |              |                                                                                                                                |      |

| Q-7 | (a) | Attempt all questions<br>Prove that $A^3-3A^2+2A=0$                       | (14)<br>(7) |
|-----|-----|---------------------------------------------------------------------------|-------------|
|     |     | If A= $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ |             |



(b) If 
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6 \end{bmatrix}$$
 then find  $A^{-1}$ . (7)

Q-8 Attempt all questions (14)  
(a) Evaluate 
$$\lim_{z \to 4} \frac{\sqrt{z-2}}{z-4}$$
, if it exists. (5)

(b)  
Evaluate 
$$\lim_{h \to 0} \frac{(6+h)^2 - 36}{h}$$
, if it exists. (5)

(c) Evaluate 
$$\lim_{x
ightarrow -5} rac{x^2-25}{5x^2+2x-15}$$
, if it exists.



(4)